1.School of Mathematical and Physical Sciences, Hebei GEO University, Shijiazhuang 050031, China;2.School of Mathematics and Statistics, Hebei University of Economics and Business, Shijiazhuang 050061, China
摘要设图G=(V,E),其中|V|=p,|E|=q.对于k∈N,如果存在一个双射f:E→{k,k+1,…,k+q-1},使得它的导出映射f+:V→Zp,uMT ExtraaAp(u,v) mod p也是一个双射,则称图G是k-边优美的.对于所有的满足G为k-边优美图的非负整数k构成的集合称为图G的边优美指标集.本文根据轮图的特殊性质,讨论了S(7,n)为k-边优美图的必要条件.根据所得的必要条件,利用递归的方法构造S(7,n)的k-边优美图标号并给出详细证明,从而完全解决了当n为偶数时S(7,n)的边优美指标集问题.
Abstract:Let k be an nonnegative integer, and G be a graph with p vertices and q edges. The graph G is said to be k-edge-graceful if there is a bijection f:E→{k,k+1,…,k+q-1},such that the induced mapping f+:V→Zp,uMT ExtraaAp(u,v)mod p is a bijection too. In this paper, by the especial property of the graph, the necessary condition which the graph S(7,n) is k-edge-graceful is discussed. A method to construct k-edge-graceful graph S(7,n) is given out by recursion and the problem of what sets of natural numbers are the edge-graceful indices of graph S(7,n) is completely resolved when n is even.
刘晓姗,王 琦. S(7,n)的k-边优美的图标号Z[J]. 华中师范大学学报(自然科学版), 2018, 52(6): 765-767.
LIU Xiaoshan,WANG Qi. On the k-edge-graceful indices of S(7,n). journal1, 2018, 52(6): 765-767.