2025年04月04日 星期五 主页   |   首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   期刊订阅   |   编辑队伍   |   留言板   |   联系我们   |   English
华中师范大学学报(自然科学版)  2021, Vol. 55 Issue (4): 559-566    
  本期目录 | 过刊浏览 | 高级检索 |
基于统计滤波和稀疏度优化的印花配准算法
舒 军1,2, 邓明舟1,2, 雷建军3, 杨 莉3
(1.湖北工业大学电气与电子工程学院, 武汉 430068;2.湖北工业大学太阳能高效利用及储能运行控制湖北省重点实验室, 武汉 430068;3.湖北第二师范学院计算机学院, 武汉 430205)
Printing registration algorithm based on statistical outlier removal and sparsity optimization
SHU Jun1,2, DENG Mingzhou1,2, LEI Jianjun3, YANG Li3
(1.School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China;2.Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System,Hubei University of Technology, Wuhan 430068, China;3. College of Computer, Hubei University of Education, Wuhan 430068,China)
全文: PDF (4097 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 在数码印花技术上,传统全局印花图案配准方法在精度和效率上无法满足需求,局部印花图案配准方法存在配准误差较多导致匹配误差大的问题,还存在图像变形控制点过多导致算法效率低等问题.该文提出了一种新的局部印花图案配准方法.该方法基于统计滤波优化配准算法,减少FLANN匹配点中的误差点;并在分析图像变形中冗余控制点特性的基础上,提出一种基于稀疏度的冗余优化算法降低控制点数量.实验结果表明:该方法可有效滤除配准后的误差点,优化控制点集,总体提高配准精度和算法效率.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
舒 军
邓明舟
雷建军
杨 莉
关键词 图像配准 数码印花技术 统计滤波 薄板样条 特征匹配    
Abstract:In digital printing technology, the traditional global printing pattern registration method cannot meet the requirements in terms of accuracy and efficiency. The local printing pattern registration method has the problem of large registration errors resulting in large matching errors, and low algorithm efficiency coused by too many image distortion control points. This paper proposes a new registration method for partial printing patterns is proposed. This method is based on statistical outlier removal registration optimization algorithm to reduce the error points in the FLANN matching points. Based on analyzing the characteristics of redundant control points in image deformation, a redundancy optimization algorithm based on sparsity is proposed to reduce the number of control points. Experimental results show that this method can effectively filter out the error points after registration, optimize the set of control points, and improve the overall registration accuracy and algorithm efficiency.
Key wordsimage registration    digital printing technology    statistical outlier removal    thinplate spline    feature matching
收稿日期: 2021-08-09     
引用本文:   
舒 军,邓明舟,雷建军,杨 莉. 基于统计滤波和稀疏度优化的印花配准算法[J]. 华中师范大学学报(自然科学版), 2021, 55(4): 559-566.
SHU Jun,DENG Mingzhou,LEI Jianjun,YANG Li. Printing registration algorithm based on statistical outlier removal and sparsity optimization. journal1, 2021, 55(4): 559-566.
链接本文:  
https://journal.ccnu.edu.cn/zk/CN/     或     https://journal.ccnu.edu.cn/zk/CN/Y2021/V55/I4/559
版权所有 © 《华中师范大学学报(自然科学版)》编辑部
地址:武汉市珞瑜路152号华中师范大学田家炳楼7楼华师学报编辑部 邮编:430079 电话(传真):027-67868127
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn