[1] WOLSTENHOLME J. On certain properties of prime numbers [J]. Quart J Math, 1862, 5: 3539.
[2] LEHMER E. On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson [J]. Ann of Math, 1938, 39: 350360.
[3] SUN Z W. Arithmetic theory of harmonic numbers [J].Proc Amer Math Soc, 2012, 140: 415428.
[4] WEI C A. ChuVandermonde convolution and harmonic number identities [J]. Integr Transf Spec F, 2014, 24: 324330.
[5] CHEN Y, HOU Q, JIN H. The AbleZeilberger algorithm [J].Electron J Comb, 2011, 8: 17.
[6] SUN Z H. Congruences concerning Bernoulli numbers and Bernoulli polynomials[J].Discrete Appl Math, 2000, 105: 193223.
[7] SUN Z W, TAURASO R. New congruences for central binomial coefficients[J]. Adv in Appl Math, 2010, 45: 125148.
[8] SUN Z W. A new series for π3and related congruences [J]. Internat J Math, 2015, 26(8): 123.
[9] SPIESS J. Some identities involving harmonic numbers [J]. Math Comput, 1990, 55: 839863.
[10] CHYZAK F. An extension of Zeilbergers fast algorithm to general holonomic functions[J]. Discrete Math, 2000, 217: 115134.
[11] MESTROVIC R. Proof of a congruence for harmonic numbers conjectured by Z.W. Sun[J]. Int J Number Theory, 2012,8(4):15.
|